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ABSTRACT

Equipment was designed to measure both instantaneous heat

transfer and pressure characteristics of solid propellant rocket

igniters, Results indicate that evaluation of igniters solely on the

basis of pressure produced is not valid since igniters differing as

much as 150% in total pressure output differed less than 30% in

terms of total heat transfer.
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INSTANTANEOUS HEAT TRANSFER, PRESSURE, AND SURFACE
TEMPERATURE CHARACTERISTICS OF SOLID PROPELLANT

ROCKET IGNITERS

Ignition failure or improprr ignition is one of the most

common types of malfunctions experienced in solid-fuel rocket

motors. 'This is not surprising since the ignition process consists

of a series of exceedingly rapid, complex, and interdependent re-

actions which occur in two distinct phases: the transient phase and

the steady-state phase. The basic process of transferring cncrgy

from the igniter to the propellant grain is time-, temperature-,

and pressure-dependent.

During the transient phase of Ignition, the rate of lnstantnneous

heat transfer and the total heat transfer from the Igniter to the sur-

face of the propellant grain are most important. If the energy sup-

plied by the igniter is not matched to the requirements of the propel-

lant, various abnormalities such as over-ignition, slow-ignition,

hang-fires, and chuffing will occur.

During the transition period, from the beginning of ignition to

the attainment of 'steady-state propellant burning, the Igniter must

supply a minimum threshold pressure. If the pressure is below the

minimum threshold value, or if the rate of pressure rise is too

slow, Ignition delays occur or ignition of the grain may be Inter-

rupted. If the rate of pressure rise is too fast, extremely high 'I

maximum pressures arc built-up quickly with the generation of

sufficient force to crack the grain and cause unsteady burning or

even explosion of the rocket motor.
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From the preceding considerations, it is evident that both

pressure and temperature are critical factors in the ignition proc-

ess. Since both quantities exert their effects simultaneously, it

is also desirable to measure both simultaneously. This has not

been done, however, because test equipment for the simultaneous

and instantaneous measurement of both the pressure and tempera-

ture characteristics of the igniters has not been readily available.

Consequently, the standard practice has been to assess the igniters

primarily by the pressure which they produced since this measure-

ment could be made simply and accurately, and it was assumed that

if the pressure characteristics of the igniters were similar, then

the thermal characteristics would likewise be similar. The simul-

taneous pressure and temperature data obtained in this project

show the fallacy of this assumption.

TEST EQUIPMENT

A small-caliber aircraft rocket and its black powder-magnesium

igniter was the prototype motor used in this work. An igniter test

chamber, shown in Figure 1, was designed to simulate this motor.

The chamber has the same length and internal free volume as the

grain used with the igniter. It is fabricated from stainless steel

and consists of three principal sections: a removable head chamber,

an instrumented chamber, and a removable nozzle section. The

head chamber is easily removable for tests where temperature con-

ditioning of the igniter-head chamber is required. The instriunented

chamber has three gage stations, each equipped with a Baldwin HF

Series, SR-4 strain gage of 1000 psi capacity and a fast-responding

chromel-alumel thermocouple with a response time of 10 microsec-

2
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onds manufactured by the NANMAC Corporation. Firing data were

recorded on a Consolidated Electrodynamics Corporation

Oscillograph recorder. Typical pressure and temperature oscillo-

grams are shown in Figures 2 and 3.

Small-caliber rocket igniters, containing a mixture of black

powder and magnesium and having an average charge weight of

8. 39 grams, were used in the tests.

TEST PROCEDURES

Test equipment and the mathematical procedures used to

calculate the rate and total heat transference were evaluated by

firing several igniters with the chamber assembled as a closed

bomb. (The nozzle section was sealed shut by a threaded metal

cap.) The data obtained were then compared with the mean stand-

ard heat-of-explosion values of the igniters. The test chamber

was then fitted with a standard nozzle assembly of the type normally

used with the igniters and additional firings were conducted. The

pressure characteristics of the igniters and the rate of heat trans-

fer and the total heat transfer from the igniter to the wall of the

test chamber were calculated from the pressure-temperature

oscillograms obtained.

DEVELOPMENT AND APPLICATION OF
MATHEMATICAL PROCEDURES

Development of Mathematical Procedures(1 )

Under the assumptions of unidirectional heat flow in a semi-

infinite solid and constant average thermal properties, the rate of

4
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heat transferred at a gas-metal intersurface may be calculated from

the equation:

K fnd4(X) d____

q(tn) - K tfl dA
V -a o d 4 /_7

where

q(tn) = heat rate at time in, cal/sq cm see

K = thermal conductivity, cal/(sq cm)(sec)(°C/cm)

a = thermal diffusivity, sq cm/sec

t = time, sec

4 (t) = function defining the variation of surface temperature

with respect to time

A = variable of integration

T = temperature.

An observation of the temperature-time curve reveals that

$D(t) is a high order polynomial. Equations of this nature are dif-

ficult to fit and would, at best, be a close approximation to the

true curve. However, small segments of the curve can be closely

approximated by linear equations. If we let *i(t) represent the

linear equation for approximating (P(t) over an interval ATi, the

derivative of Oi(t) is the slope, mi, of the line. If the tempera-

ture change over the ith interval is represented by ATi, then the

slope mi = ATi /Ati. The linear slope over a small interval is

then the best approximation for d,(X)/dA. Thus, we can rewrite

q(tn) as follows:

K n fti dA,: I

q(tn) mi-

i-I=~t -i V(rTn.-)

7
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2K fl F 1/2 1/21n(tn) 2 MitntiI n-t ) J

Experimentation with different time intervals led to the con-

clusion that 1-millisecond intervals provide a sufficiently accurate

approximation for this particular problem.

Application of Mathematical Procedures

An example will illustrate the actual procedure used to calcu-

late the heat transfer rate. To facilitate computation, the tempera-

ture oscillogram is traced on graph paper so that ordinate and

abscissa values can be readily obtained. This introduces the ne-

cessity for a constant, c, to define the relationship between graphic

blocks and °C/millisecond which represents the true slope m. The

graphic slope min is obtained as (yi - y i )/ - for the ith interval,
i _d (x -x'_ineral

where x! and Y' are the time and temperature elements respectively in

terms of graphic units. Therefore m = cm, where c is the constant

mentioned above. The number 2 developed through the integration of

is then combined with the thermal constant

K

and c to provide a total constant,

2cK
C-

for each 4(A). (C may change for each 4)(X) depending on the cali-

bration of that curve.)

8
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Computation is simplified by the use of a table set up for each

4'(X) similar to Table I in the Appendix on which is calculated the

m' [ (tn-ti 1//2 -_ tn-ti ) j / 1/21

for each required interval. It will be seen that the expression

[ (tn- - / (nt /
is the difference between consecutive square roots and can be readily

computed.

To obtain the heat transfcr rate for a specific time, tn, it is

first necessary to compute the cross-products for each interval from

to-tn. It is then necessary to sum the diagonals for each interval

i=1, 2, 3, thereby obtaining the

; [(tn-ti 1)1/2 - (tn-ti)1/2.

This sum is thGel multiplied by the constant C to obtain the heat

rate for time tn. For cxample, using the tabulation below, we

wish to find the heat rate when n= 5. For time t 5 we have:

Time Time Element

ti slope 1/2 (\/ 1 Temperature-
(msec) mi (tn-ti-1) tn-ti/] Time Element

1 5.75 (0.2361) = 1.3576

2 5.00 (0.2679) 1.3395

3 5.25 (0.3179) = 1.6690

4 3.75 (0.4142) = 1.5532

5 1.00 (1.000) = 1.0000

6.9193

9
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For this temperature curve,

OC/block = 4.9164
msec/block

and

2cK
C =- = 0.06224.

Therefore, at t5 the rate of heat transfer q(t5 ) is r (0.06224) (6. 9193)

= 0.43066 cal/sq cm sec.

To obtain the heat input Q(t), for a specific d(X), it is neces-

sary to obtain the heat rate q(t) for each interval over the required

time. (This may be the total burning time or some smaller period

within the limitations imposed by the assumptions.) The integral of

the heat rate curve q(t) is the required quantity, Q(t), the toal heat

input of the rocket igniter.

DISCUSSION OF RESULTS

Test equipment and mathematical procedures used to calcu-

late the rate and total heat-transfer data were evaluated by firing

several randomly chosen igniters in the chamber after it had been

assembled as a closed bomb by sealing off the nozzle section with a

threaded metal cap. A comparison of the total heat thus measured

with the mean standard heat-of-explosion values of similar igniters

showed that there was no statistically significant difference between

the data obtained by the two different methods. Once this had been

established, the test chamber was fitted with standard nozzle as-

semblies, and additional data were obtained. In these tests the

igniters were subjected to the various nozzle closure effects nor-

mally experienced in actual use. The usual ballistic characteristics

10
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such as ignition delay, burning time, maximum pressure, and

pressure-time integrals were determined from the pressure

oscillograms. The rate of heat transfer and the total heat trans-

fer from the igniter to the wall of the test chamber were calculated

from the temperature oscillograms.

A summary of ballistic and heat-transfer data for one series

of igniters tested is presented in Table II of the Appendix. It is

evident that the ballistic characteristics of the igniters vary widely,

particularly with respect to rates of pressure rise and, in the case

of Rounds 3 and 5, with respect to burning time and pressure-time

integrals. The large difference in the pressure-time integrals of

Rounds 3 and 5 indicates that these rounds may differ in total energy

output by over 150%. However, the difference between the two

rounds in terms of total heat transfer is actually slightly less than

30%. The heat-transfer data for Rounds 3 and 5 also indicate that

an average of 3453 calories was transferred from the igniter to the

chamber. Since standard closed bomb measurements revealed that

an average of 7764 calories was available from the igniters, it is

apparent that 431 1 calories were lost via the nozzle. Therefore,

slightly over 55% of the total energy output of the igniters was

actually not available to the grain for ignition.. Hence, instanta-

neous heat-transfer measurements provide valuable data for the

design of nozzle assemblies and seals which deliver the maximum

quantity of energy from the igniter to the grain.

Heat-transfer data from these and other rounds also indicate

that the distribution of heat energy throughout the chamber has a

fairly consistent, although nonuniform, distribution pattern from

round to round (even for rounds whose total heat transfer was

11
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greatly different from Rounds 3 and 5). For example, the average

percentage of the total heat input measured at Gage Stations 1, 2,

and 3 respectively was 45%, 30%, and 25%. The stations were

located 3.25, 14.50, and 25.75 inches distant from the blowout

plug of the igniter. Typical heat-transfer curves and the resultant

composite total heat transfer curve are shown in Figure 4C Data of

this type are particularly useful in studying the process of ignition

since it is generally conceded that the surface of the grain is raised

to its ignition temperature by the energy which it receives from the

reaction products of the main igniter charge. Igniter test chamber

data not only show the distribution pattern of this energy but also

permit its quantitative measurement quite accurately. The advan-

tages of the test chamber's measuring both heat transfer and pres-

sure are quite obvious.

The equipment used in this work is rugged, inexpensive, and

simple to fabricate. The mathematical procedures are straight-

forward and can be performed by technicians using desk calculators.

The Naval Propellant Plant plans to use this procedure as a routine

surveillance tool. Although the present application deals only with

small-caliber rocket igniters, the procedure has numerous appli-

cations in the study of propellant burning rates and can be of assist-

ance in evaluating propellant formulations, in securing heat transfer

and pressure data for motor and nozzle design studies, and in other

circumstances where it is desirable to isolate and measure pressure

and temperature effects simultaneously.

1
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